Kiwifruit protease Act d 1 compromises the intestinal barrier by disrupting tight junctions

نویسندگان

  • Milica Grozdanovic
  • Milena Cavic
  • Uros Andjelkovic
  • Arnd Petersen
  • Joost Smit
  • Marija Gavrovic-Jankulovic
چکیده

Background Actinidin (Act d 1) is a cysteine protease and major allergen of kiwifruit with diagnostic significance. It is the most abundant of the 11 kiwifruit allergens recognized and has been identified as a marker molecule of kiwifruit allergy. However, the mechanism underlining the oral route of exposure and sensitization to this allergen has yet to be elucidated. Working under the hypothesis that food proteases, as was shown for some inhalatory allergenic proteases, could reach the intestinal mucosa and surpass this barrier through proteolytic activity, we examined the following: Does Act d 1 have the ability to resist gastrointestinal digestion and reach the intestinal mucosa in a biologically active form? Upon reaching the intestinal mucosa does Act d 1 enhance permeability of the intestinal barrier by disrupting tight junctions?

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Yersinia pseudotuberculosis disrupts intestinal barrier integrity through hematopoietic TLR-2 signaling.

Intestinal barrier function requires intricate cooperation between intestinal epithelial cells and immune cells. Enteropathogens are able to invade the intestinal lymphoid tissue known as Peyer's patches (PPs) and disrupt the integrity of the intestinal barrier. However, the underlying molecular mechanisms of this process are poorly understood. In mice infected with Yersinia pseudotuberculosis,...

متن کامل

Chymase mediated intestinal epithelial permeability is regulated by protease activating 1 receptor ( PAR ) - 2 / matrix metalloproteinase ( MMP ) - 2 - dependent mechanism

23 Mast cells regulate intestinal barrier function during disease and homeostasis. Homeostatic 24 regulation in vivo is through secretion of the mast cell-specific serine protease chymase. In the 25 present study, we employ in vitro model systems to delineate the molecular pathways involved in 26 chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal 27 ep...

متن کامل

Desmoglein 2-mediated adhesion is required for intestinal epithelial barrier integrity.

The integrity of intercellular junctions that form the "terminal bar" in intestinal epithelium is crucial for sealing the intestinal barrier. Whereas specific roles of tight and adherens junctions are well known, the contribution of desmosomal adhesion for maintaining the intestinal epithelial barrier has not been specifically addressed. For the present study, we generated a desmoglein 2 antibo...

متن کامل

SENP3 grants tight junction integrity and cytoskeleton architecture in mouse Sertoli cells

Germ cells develop in a sophisticated immune privileged microenvironment provided by specialized junctions contiguous the basement membrane of the adjacent Sertoli cells that constituted the blood-testis barrier (BTB) in seminiferous epithelium of testis in mammals. Deciphering the molecular regulatory machinery of BTB activity is central to improve male fertility and the role of post-translati...

متن کامل

Chymase-mediated intestinal epithelial permeability is regulated by a protease-activating receptor/matrix metalloproteinase-2-dependent mechanism.

Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolaye...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014